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Maxwell equations are studied for a vacuum with nonzero conductivity 
coefficient. The loss of energy of a photon during its propagation through this 
vacuum is calculated and the nonzero rest mass of the photon is shown to be 
related to the conductivity coefficient of the vacuum. The dissipative mechanism is 
investigated considering a conformally fluctuating metric in the Einstein equation. 
Possible astrophysical consequences are discussed. 

1. I N T R O D U C T I O N  

Maxwell 's equations have been studied in a vacuum with a nonzero 
conductivity coefficient, i.e., with cr r The nonzero conductivity coefficient 
gives rise to a dissipative term in the field equation. In this case if we consider 
the propagat ion of  a photon through this type of vacuum, the photon 
acquires a mass at cosmological scale. In fact, due to the presence of  the 
dissipative term in the field equation, the photon loses energy during the 
propagat ion through this vacuum. This dissipation can be related to the 
conformal fluctuation of the metric of  the background space-time. Taking 
a conformally fluctuating metric in the Einstein equation for the gravita- 
tional field (Sinha and Roy, 1987), we have constructed the average metric 
tensor of  the background space-time in the vacuum. After averaging over the 
ensemble of  the random scalar field, the fluctuation of the metric generates a 
term like the cosmological constant term A in the Einstein equation. There 
is a parameter  ~ (0 < ~ < 1) in our framework which plays a significant role 
in determining A as well as in describing the behavior of  fluctuations. The 
parameter  ~ is related to the correlation of  the space-time derivatives of  the 
scalar field. 
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On the other hand, if we calculate the propagation of  the photon field 
in a vacuum with refractive index n 4= 1 and o- ~ 0, then we can construct an 
effective metric tensor of  the background space-time containing the refractive 
index. Now we can compare this effective metric tensor with the average 
metric tensor from the Einstein equation. Then we get a relationship between 
the refractive index and the parameter 4. 

The refractive index n becomes real or imaginary depending on the 
value of ~. For  imaginary refractive index, i.e., for certain values of ~, 
the photon acquires mass during its propagation through the vacuum. For 
particular values of ~ and of real refractive index, the cosmological term A 
vanishes and we get a positive-definite metric tensor similar to that consid- 
ered by Dohrn et al. (1985) in describing a conservative diffusion process. 
The existence of a conservative diffusion process plays a significant role in 
the stochastic quantum mechanics proposed by Nelson (1985). It is generally 
believed that quantum fluctuations should be considered as nondissipative 
in nature. This is unlike other statistical fluctuations in physics in the sense 
that they are considered as dissipative in nature (Smolin, 1986). 

In Section 2 we study the relation between the nonzero rest mass of  the 
photon and the conductivity coefficient of the vacuum. In Section 3 we 
study the Einstein equation for the gravitational field with a conformally 
fluctuating metric and the nature of the situation on a microscopic scale as 
well as on a cosmological scale. In Section 4 we describe possible astrophys- 
ical consequences, such as fhe relation between the massive photon and 
the Hubble constant (Fuli, 1975). Finally, an estimate of the conductivity 
coefficient o- of the vacuum is made which can be tested in laboratory 
experiments. 

2. MAXWELL EQUATIONS AND N O N Z E R O  P H O T O N  
MASS IN VACUUM 

If we endow the vacuum with nonzero conductivity, i.e., o-:~0 in the 
vacuum, Maxwell's wave equations should be rewritten in the form 

OE 
div E=O curl H = o-E + eotCe-- ( la)  

8t 

OH 
div H = 0  curl E =  - p o X , , , -  ( lb)  

8t 

where e0 denotes the vacuum's dielectric constant,/~o denotes the vacuum's 
permeability constant, ~Ce is the relative dielectric constant, and to,,, is the 
relative permeability constant. 
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NOW, 

V • V • E = -V2E 

which together with Maxwell's equations gives 

V2E = eolCdr 02E OE 
/t0 _~-+  a/t0tc,,, - -  ( 2 )  r & 

This equation is not fime-reversal-invariant. The second term on the right- 
hand side indicates that there will be a dissipation of energy during the 
propagation of a photon. 

If we consider only plane waves in the z direction, 

/ \1/2 
H , I eOl~e ~ eiOJ(t-z/v) Ex=  e 

putting q = 1 / v  and the plane wave solution of E in (2), we get 

2 tc,~:,,,(l_ ia  /e0/to (3) 
q = c - - - T -  eo~ev/  

Thus, it is evident from the above equation that q can be taken as complex 
in nature, having the form o f  a - ifl, where a and/3 are real and are given 
by 

2 1 /  o- ~2 1 (4) 

for a /co  -~ O. 
Then the velocity defined by v in equation (3) will give rise to a complex 

refractive index n in the vacuum. The velocity defined by v = 1/ct is the phase 
velocity of propagation of the disturbance through the underlying vacuum. 
Henceforth it will be denoted as vp. So 

l 0 .2 

and the group velocity can be written as 

00) o 
V g -  Ok where ve k 
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Hence 

k nl , ],j2 /2g = n 2 - -  = , -1 
co 4 (EOKe)2n4CO2J 

1 2 where the dispersion law gives k 2= co~+ ~cr. 
Taking the values of a and fl and n = 1, we can show Ex and Ey to be 

proportional to 

exp(-coflz) exp ( t -  az) 

Then we arrive at the following results: 

(a) Plane waves are progressively damped with the factor exp(-kz),  
where k = co/L 

(b) The phase velocity Vp of propagation of the wave is 1/a and varies 
with frequency. 

The fact that equation (2) is not time-reversal-invariant is due to the second 
term on the right-hand side of (2), which indicates that there will be a 
dissipation of energy during the propagation of a photon. 

Taking vg as the velocity of a photon in de Broglie's relation (de Broglie 
and Vigier, 1972), 

E=hv--(1-v~/c2)  '/2 (s) 

and co =2Jrv, we get the mass of the photon as 

O-2~ 2 
2 ~2co2(1 _n2 ) (6) m~= 

4n2(e0tce) 2 

for the Maxwell vacuum with an imaginary refractive index n 2= - m  2 (say) 
and 

O-2~ 2 
2 h2co2(1 +m2)g (7) my= 

4(m2s~K~) 

It appears from the relation (6) that the mass of the photon will depend on 
the frequency of the electromagnetic wave. The mass will be zero when 

O.-2h 2 
J~2co2(1 - - n  2) - -  

4n2(eO~e) 2 

o r  

0 ) 2 =  
0- 2 

4n2(1 - n2)(ao/G) 2 
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Thus, the photon with every possible frequency will not gain mass during 
its propagation through this type of vacuum for fixed n and fixed o-. Hence, 
for fixed n and cr the mass of the photon is dependent on the frequency 
during its propagation through this type of vacuum. Moreover, for a com- 
plex refractive index the mass will be large. Several authors (Fuli, 1975; 
Vigier, 1990) also calculated the effective photon mass as 

= h _ H ~  10 -65 
m r 2 C  2 - -  g (8) 

where H is the Hubble constant. 
They tried to relate it to an explanation of the redshift mechanism on 

the cosmological scale. But it requires a detailed analysis to find such a 
relationship and use it for an alternate mechanism for the redshift. For small 
co and a complex refractive index, say n 2= -1 ,  we have also m r ~ ( 1 / 2 ) c r /  

neotCe from equation (6). Now we can find the structure of such a vacuum 
where the photon loses energy during its propagation and becomes massive. 

Equation (2) can be written as 

0~E ~E 
V2E=n 2 ~t 2 +po~:,.cr ~ -  (9) 

with x j r  1, rt 2 -  go]-/o, and c= 1. 
Putting E =-OA/Ot-Vq~ in (9), we get 

32A gqA 
V2A-n 20t  2 = p o ~ , . a  t O  ~ + p ~  V dp 

= -polC,,,J (10) 

where 

J or( 0A = ( r E =  \ - ~ - - V @  

and 

V2~b-n 2 - - = 0  (11) 
t 
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Using the plane wave solution, we get the following dispersion equation, 
written in a covariant form: 

where 

// .~ n 2 -  1 quq~)J~(k) 
(Ikl2-n2k2)A"(k)= tc,.Izo~g + - 7  (12) 

J = (0, <rE), K = (k ~ k) 

Note that we get exactly the same dispersion as derived by Schwinger 
et al. (1976) for a medium with a refractive index n=hl .  Here 17 ~' is the unit 
timelike vector and 7/= (0, 1) for the medium at rest. Hence the effective 
metric tensor of the underlying vacuum having or=0 and n = 1 can be 
expressed as 

/ , /2  l 
G"V=g~V+ n ~  r/i'0 ~ (13) 

We have already shown that if a photon propagates through the vacuum it 
loses energy and this dissipation can be related to the conformal metric 
fluctuation of space-time. 

3. CONFORMAL METRIC FLUCTUATION 
AND EINSTEIN EQUATION 

In this case the vacuum has been characterized by the fluctuation of the 
space-time metric. This fluctuation diminishes as the size and mass of the 
object become larger, which can also be related to the stochastic stress-energy 
tensor for matter and radiation present in some regions of the universe. It 
has been shown by Sinha and Roy (1987) that the fluctuation of the space- 
time metric can give rise to a term like ,~, i.e., the cosmological constant in 
the modified Friedman equation. 

In this model the metric tensor of the space-time is assumed to be 
decomposed as 

g~V = ~ v  + ~ g ~  (14) 

where 8g,V is considered as the fluctuating part, very small compared to 
guv, the average part. In the same way the matter-energy tensor can be 
decomposed into two parts, 

TU,, = ~ v  + ~T~V (15) 

where T'V describes the global motion of matter characterized by a large 
scale L and period of time T, and the term ~T u" is due to the turbulent 
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motion of  matter characterized by a small scale ~ and short period r ;  T "v 
is the mean value. 

Now the Einstein equation is 

R , v  = 8 ~ a (  T u v -  1_ ;~, _ , 2gu~g T p o ) - 8 r c G T u ~  (16) 

where the stochasticity enters through the extra term of the energy-momen- 
tum tensor. In terms of  the affine connection, the Ricci tensor on the left- 
hand side of equation (16) is 

_ u a a t~ a p R. v - Fu ~,~ - Fu ~.~ - Fl,p F~,~ - F~ vF~  (17) 

when the affine connection itself is defined in terms of  the metric tensor by 

F ~ = ! - P " ~ -  +g,.~..+g~ . . . .  ) (18) 2 g t~cr/r, v 

Denoting the average values with respect to the statistical ensemble by a 
bar, equation (18) turns into 

- ( 7 , . Y ~ t 3 )  - r~.F~p + ( 7 u p r . ~ )  (19) 

The tensor y~v= p -P F.  ~ - F u  ~ relates to fluctuations in the gravitational force 
field with zero mean value ( ? '~ , . )=0  as a consequence of the definition 

Again the mean value of the affine connection should be equal to the 
Christoffel symbols in the mean value of  the metric tensor, i.e.. 

(g. ,~r ,  p ~) = �89 (g,,,.~ + g~,~., - g.v.~,) (20) 

follows from the fact that the probability distribution over cosmologies will 
be Riemannian. 

This is satisfied if 

( (g~,o- g~)X,% ) = 0 (21) 

Now the a n n e  connection can be expressed in terms of Christoffel symbols 
in the mean value of the metric tensor as 

- _ -  

= 2 g  (g~,u.~+g,,~.~ guv.~,) (22) 

Then equations (17), (19). and (22) yield Einstein's equations for the mean 
value of  the metric tensor. 

= 8nGT*v (23) 
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where 

(T , ,v+  (8rca) (7 .~7v~-  ?' .~) '~o))  (24) 

For  simplicity, let us take the specialized stochastic space-time metric which 
are conformally related so that the metric tensor will be of  the form 

g~ v = exp[ 4']oa,, ~ (25) 

where 4' is a stochastic scalar field. 
Then, as gu~ = (gv , ) ,  we get 

(exp[4' l)  = 1 (26) 

at all space-time points. 
But the normalization condition implies that 

(exp[4'] 4',~ ) = 0 (27) 

where 4',~, denotes the space-time derivative of 4'. 
Now, by putting (25) into (21) and using the definition (22), we get 

o - �9 , u - g ~ g  q~,o) F,, _ {  p }+�89 a o+4 'va  . - - o , . -  . (28) 

Hence the probability distribution will be Riemannian with 

= {,, o ,,} 

if and only if the homogeneity condition is satisfied: 

<4',,,>=0 
Now it is clear that fluctuations in the gravitational field will be given by 

7;,~ 1 ~, - g v v g  q~,~) (29) 

Again the mean value of  the stochastic stress-energy tensor is assumed to 
take the generic form 

(T,,, ,> ~ ( p  + e>u ,u , ,  + (P>R,,,, (30) 

where u~ is a normalized timelike eigenvector of  ( T ~ > .  Let us now 
calculate T u* v ." 

1 - - p c ) -  

= ( ( e  + p > .~ .~  + (*'>g~.) 
I - o- = ( P  + p)uuuv  + ( P ) ~ , ,  ~ - ~g,. ( P  + p>u u .  
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Putting u~u,~ = - 1  and ~P~ = 4, we find that equation (31) becomes 

<T'v> ~ <P + p>uvuv + �89 < p -  P>~.~, v (32) 

But since the correlation tensor <~b~b v> is nonnegative definite and the only 
preferred direction at a space-time point is given by u. (time like), we must 
h a v e  

< c~ v fb v> = A (u.uv + ~ v) (33) 

for a certain nonnegative scalar function A and ~ (<1). So, from (32) and 
(33) it follows that 

a p I - a 

= �89 - 1)~.~-  u~uv] (34) 

Using (33), the effective source tensor T* is given by 

T, ,~-  [<p> + <P> - (16rcG) ']u.u~ + �89 - <P> + (8 rcG)- ' (3~-  I)A]g.~ 

= ( p -  P)u~u~- ~(p-  P)g.~ (35) 

where the effective density and pressure are given by 

t3= (p> + 3(16~rG)-~(~ - �89 (36) 

/3= <p> + (16JrG)-'(�89 - 3~)A (37) 

This change in the equation of state will alter the solution to the Friedman 
equation 

- -=  -4zcG(�89 r +/5) (38) 
R 

where K =  0, :t: 1. 
Using the values of r and P from (36) and (37), we get the modified 

Friedman equation as 

( R / R )  2 + K / R  2 = 8jrg<p> + �89 ( ~ - �89 (40) 

But 4rc(p>R 3 = c (constant), so 

(/~)2 + K -  3( ~ - �89 2 = 8zvGc/3R (41) 

o r  

(R) 2 + K -  A R  2 = 8rcGc/3R (42) 
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where 
A l = 5 ( ~ -  �89 (43) 

This equation is identical to the Eddington-Lemaitre model if we put A = 
1 1 I 5( ~ - 5)A. If  ~ > 5, t3 must be greater than (p ) ,  the nonnegatlve incremental 

i A change in I~/R being given as ~ . Again, if A=0 ,  then (~b.4,~)=0,  so 
that the correlation between ~b. and ~b.v vanishes and A = 0. It is clear that, 
if we take the stochasticity of the space-time metric as a prior notion, then 
obviously we obtain A r  for ~ ~ 1 and A > 0. Now A -r denotes the empty 
space producing the same gravitational field as when the space contains 
matter with mass density d~A=SA/C ~, energy density eA=C2A/8rrG, and 

- ~ ) A .  pressure pA =--SA. From (36) we write /3 as t3= ( p ) +  (3/161rG)(~ i 
By calculating the average of T. ~ of the vacuum with the stochastic metric 
tensor we get 

( T ~ )  = A [(3~ - 1)~uv - uuuv ] 

A 
=Z-(3~ - 1)[g,~- u, uv(3~- 1)1 

Z 

where 

=p~r (44) 

1 
G.v=Gv-U~Uv-- ( 4 5 )  

3 ~ - 1  

This metric tensor should be considered as the metric tensor of the vacuum 
or that of the background space-time. Since (T~'~) is nonnegative definite, 
the metric tensor G~V~ must be positive definite. We have already mentioned 
that in classical electrodynamics Schwinger et al. constructed the photon 
propagator containing the phenomenological information concerning the 
medium, where 

D~+V(x-x')=l't [gUV +( -~)rTUrl~] D(x-  x') (46) 

7/"= (0, 1) is the unit timelike vector when the medium is at rest and n 
represents the refractive index of  the medium. The last equation may be 
rewritten as 

D +u v(X - x') = p- G, ~D(x - x') 
c 

where 

Gv=g~v+( 1 _~)~%v (47) 
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which may be considered as the effective metric tensor of the vacuum with 
n ~ 1. Now it is obvious that there is a striking similarity between the metric 
for the cosmological vacuum and the effective metric tensor in classical 
electrodynamics. 

Comparing (45) and (47), we get 

1 1 1 
- o r  n 2 = 1 - 3-~ ( 4 8 )  

1 n2 3 4 - 1  

The refractive index n may be real or imaginary, depending on the value of  
as follows: 

Case/. �89 < ~ < 1. We see from the relation (48) that n 2 < 1 and positive. 
This indicates that when the universe is not closed (k=  +1) the refractive 
index of the vacuum n becomes less than one: 

Cy2h 2 
2 _ h2co2( 1 - n 2) m y -  

4n2(e01r 2 

This implies that for these values of  ~ the photon will be massive. But 
there will be no significant shift in the frequency (i.e., red shift). This is due 
to the fact that for real n (and n<  1) the damping factor e -'~ with /~= 
1 2 2 :(r~/n) (1 /co)  will be very large and the medium behaves almost Dike a 
nonconducting medium. 

Case//. ~ = �89 This means A = 0, i.e., the cosmological constant van- 
ishes. In this case, n 2= �89 

1 Case IlL �89 < ~ < ~. In this range A will be negative but the refractive 
index n will still be real and positive. 

Case IV. 0 <  ~<  �89 The refractive index n will be imaginary and the 
vacuum behaves like a conducting dielectric medium. So a red shift will 
occur when a photon passes through this vacuum. In such a case the photon 
mass mr will be large and for very small co [equation (6)] 

O" 
"-, (49) 

m r  - 2n 60tee 

Comparing the relation for my with equation (8), we have 

O" 
H =  (50) 

2 ~ n 6 0 t < "  e 

For example, let us take ~=�88 (i.e., within the range 0 < ~ < � 8 9  Then 
cr__2.2 • 10 -j7 sec -j taking H =  1.5 • 10 -'7 sec -1. Hence the conductivity of  



604 

the vacuum might be experimentally verified as 
2.2 x 10 -17 s e c  -1 

being 

Kar e t  aL 

of  the order of 

4. POSSIBLE IMPLICATIONS 

We have constructed a model of  a vacuum which is dielectric in nature 
with refractive index n 2 = 1 - I / (3~)  with 0 < ~ _< 1. This vacuum can behave 
like a conducting medium or a nonconducting one, depending on the range 
of  values of 4. The cosmological red shift can be explained by  taking this 
vacuum as some sort of conducting medium. But on the microlevel it is 
generally believed that due to the nondissipative nature of quantum fluctua- 
tions the vacuum should behave at least not like a conducting medium. Let 
us concentrate first on the case of  the behavior of  our model of a vacuum 
on the cosmological scale. 

4.1. Cosmological Vacuum 

The cosmological vacuum is considered as a dielectric medium with 
complex refractive index. Here the nonzero photon mass is closely related 
to the dissipative mechanism of  the vacuum. This mechanism of  dissipation 
is understandable within the general theory of  relativity in the following 
manner. 

If  we consider the propagation of  very light particles, say photons, in 
a stochastic medium characterized by a fluctuating metric tensor g~,v, then 
general relativity implies that action and reaction between the gvv field and 
any moving object (say photon) is characterized by an energy-momentum 
distribution Tvv in the Einstein equation. Here, the gravitational red shift is 
being induced by the fluctuation of  the metric tensor on the passing photon 
motion. In a sense it is the backreaction of the g ~  field on the photon. 
Usually the backreaction is very small and has been generally neglected in 
the literature. 

It is to be mentioned that Vigier (1990) considered the cosmological 
vacuum as some sort of  dielectric medium with complex refractive index and 
also described some kind of  vacuum dissipative mechanism associated with 
a nonzero rest mass of the photon. The point he mentioned is that the 
quantum fluctuations are, in fact, real statistical fluctuations which reflect 
the basic stochastic character of  Dirac's aether and hence deserve a critical 
analysis. On the contrary, Smolin (1986) considered that the quantum fluc- 
tuations are unlike other statistical fluctuations and they are supposed to be 
nondissipative in character, in contrast to other statistical fluctuations. So if 
we want to build up a stochastic theory of microparticles [Nelson's (1985) 
mechanics] or the stochastic interpretation of  quantum mechanics developed 
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by Vigier (1990) with a fluctuating vacuum, it is necessary to reanalyze the 
structure of the vacuum in the following way. 

4.2. Quantum Fluctuation and Model of the Vacuum 

From (50) it appears that for n2<<l (~<~_<1), the conductivity 
coefficient ~y will be very small. Then the vacuum considered as a dielectric 
medium should be treated as a poorly conducting medium. In the limiting 
case it behaves like an insulator and the nonzero mass of the photon m~ -~ 0. 
In fact, this is consistent with the fact that in quantum electrodynamics 
we take the vanishing rest mass of  the photon and so gauge invariance is 
retained. 

Now if we consider the propagation of the photon in this type of stoch- 
astic insulating medium, the dissipation will be negligibly small. This is quite 
unlike other statistical fluctuations in physics. It is interesting to note that 
Dohrn and Guerra (1985) established a connection between the kinetic 
metric and the Brownian metric as follows: 

rl~, v = 2 d ' u "  - g ~ v (51 ) 

where gUY is not necessarily a positive-definite metric tensor in the 
Lagrangian 

[ -r - "a 
L = ~ m g u v  q ( t ) q  ( t ) -  V [ q ,  (t)] (52) 

in a differentiable manifold endowed with the metric tensor guy and 17 uv is 
a Brownian metric which is positive definite. 

From (35) we can write the effective stress tensor 

T , , v = ( p + P ) u ~ u ~ ,  ' - - -  + ~ ( P  - P ) g u  v 

where 

tS=<p>+ 3~(~-~)A 
16zcG 

/5= <p> + 1 ( �89  
16JrG 

# + / 5 =  <p> + ( p > _  1 A 
16JvG 

+A_A_ 
~ - P =  {jo>- <P> 8~G (3~- 1) 
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So 

T'~=(<P>+ (P>-161trGA)U, Uv+ �89 I))gu~ 

= e'Tm"tt~\ A(3~-  1) ( 3 ~  1 ) 

m a t t e r  v a c u u m  =<T.v >+ <T.v > 

where 

. . . . . .  A(3~-  I) uuu~-g~,, 
<Tu~ > -  16rcG 

v 8 c  v a c  
- - e v a c  G , v 

where 

* ! 
G~v c -  u~u,,-Gv 

1 ~.~ is the usual Riemannian metric tensor and 0 < ~_< 1. For ~ = ~, 

v a c  - -  - -  - -  (53) 

As (T~a~> is the average of the stress tensor for the vacuum, and (c~b &b/ . 
0x~ 0xv> is nonnegative definite, Gr is positive definite even if guy is not 
positive definite. So for ~ = �89 we get exactly the same metric tensor for the 
vacuum that Dohrn and Guerra (1985) got for the conservative diffusion 

I process. It is very important to notice that for ~ = 3, A =0, i.e., the cosmolog- 
ical constant vanishes, so the fluctuation of the space-time metric which does 
not give rise to any extra term (like the cosmological constant term) in the 
Einstein equation may be responsible for conservative diffusion considered 
in Nelson's framework. 

Thus the above analysis indicates that not only can microscopic phe- 
nomena be explained by considering the fluctuation of the space-time metric, 
but also some macroscopic phenomena such as the cosmological constant 
problem can be explained consistently. The most startling point of our 
approach is that even some cosmological models can be tested in laboratory 
experiments by measuring the conductivity coefficient of the vacuum. It 
should be noted that we can get an effect nonzero mass of the photon only 
for a certain range of frequencies. Moreover, the propagation velocity of the 
fluctuation or the disturbance of the medium, i.e., vp, is less than the speed 
of light. So no superluminal transmission is allowed in this vacuum. These 
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considerat ions might  have great significance in quan tum mechanics,  which 
will be examined in subsequent publications. 
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